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Taylor–Couette flow in the presence of a magnetic field is a problem belonging to
classical hydromagnetics and deserves to be more widely studied than it has been
to date. In the nonlinear regime the literature is scarce. We develop a formulation
suitable for solution of the full three-dimensional nonlinear hydromagnetic equations
in cylindrical geometry, which is motived by the formulation for the magnetic field. It
is suitable for study at finite Prandtl numbers and in the small Prandtl number limit,
relevant to laboratory liquid metals. The method is used to determine the onset of
axisymmetric Taylor vortices, and finite-amplitude solutions. Our results compare well
with existing linear and nonlinear hydrodynamic calculations and with hydromagnetic
experiments.

1. Introduction
The motion of an incompressible viscous fluid between concentric rotating cylinders

is one of the most important problems of fluid dynamics and is much studied as a
benchmark to investigate issue of instability and nonlinear behaviour. Taylor (1923)
found that if the rotation of the inner cylinder is greater than some critical value
then circular-Couette flow (CCF) becomes unstable to axisymmetric perturbations.
A secondary flow appears which has axial and radial motion in the form of pairs of
toroidal vortices, now known as the Taylor-vortex flow (TVF). If the inner cylinder
is driven faster then this flow becomes unstable to non-axisymmetric perturbations.
Azimuthal waves appear in the Taylor vortices and the whole pattern rotates at some
wave speed (wavy modes).

In his landmark 1961 book on stability theory, Chandrasekhar devoted equal
attention to the hydrodynamic and the hydromagnetic Couette problems; the latter is
the case in which the fluid is a conducting liquid (e.g. mercury, liquid gallium, liquid
sodium) and a magnetic field is applied externally. Despite this early interest in the
hydromagnetic Couette problem, which included experiments performed by Donnelly
& Ozima (1962) and by Donnelly & Caldwell (1963), most of the activity of the
following years was devoted to the hydrodynamic case. Among the few studies of the
effects of the magnetic field it is worth recalling the works by Velikhov (1959), Kurzweg
(1963), Roberts (1964), who extended Chandrasekhar’s theory to non-axisymmetric
bifurcations from circular-Couette flow, Chang & Sartory (1967) and Baylis & Hunt
(1971) at finite aspect ratio. Later Tabeling (1981), using a method similar to Davey’s
(1962) amplitude expansion, calculated the effective viscosity of axisymmetric flow
in the Taylor-vortex flow regime; he compared with Donnelly’s (1962) experiments
which indicate that the onset of wavy vortices is significantly inhibited by the magnetic
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field. Nagata (1996) has more recently investigated nonlinear solutions in the planar
geometry, and Hollerbach (2000a) shows Taylor cells in spherical geometry.

The aim of this paper is to investigate effects induced on Couette flow by an
externally applied magnetic field. This paper is meant to be the first of a series and
is dedicated to the development of a suitable formulation for solving numerically
the governing nonlinear three-dimensional magnetohydrodynamic (MHD) equations
in the cylindrical Couette geometry. The numerical method which we propose can
be used for any value of radius ratio, is suitable for time stepping, has good sta-
bility features, is relatively easy to program and is more accurate than existing
methods.

Our work is also motivated by the renewed interest in MHD flows in confined
geometries which arises from current and planned experiments to produce dynamo
action in the laboratory (Gailitis et al. 2001; Stieglitz & Muller 2001). It must be
stressed that our work does not apply directly to the dynamo problem for two reasons.
First, the cylindrical Couette configuration is a possible geometry for these studies,
but it has not been used in experiments yet, and it may prove to be not the most
efficient one (Laure, Chossat & Daviaud 2000). Secondly, our investigation refers
primarily to bifurcations at relatively small Reynolds numbers, while the dynamo
experiments require rather large Reynolds numbers due to the small magnetic Prandtl
number of liquid metals. Despite these two limitations, our work is related to the
dynamo problem because it is important to have precise results for small Reynolds
number MHD flows in order to develop and test modern acoustic flow visualization
techniques, Kikura, Takeda & Durst (1999), which offer the best chance to detect
flow patterns in MHD dynamos. The lack of flow visualization has clearly held
back progress in the hydromagnetic Couette problem compared to the hydrodynamic
case.

2. Equations
The equations governing incompressible hydromagnetic flow are

∂tu+ (u · ∇)u = −1

ρ
∇p+ ν∇2u+

1

ρµ0

(∇ ∧ B) ∧ B, ∇ · u = 0, (2.1a , b)

∂tB = λ∇2B + ∇ ∧ (u ∧ B), ∇ · B = 0, (2.1c, d )

where u is the fluid’s velocity, B the magnetic field, p the pressure, ρ the density,
ν the kinematic viscosity, λ the magnetic diffusivity and µ0 the magnetic permeability.
Hereafter we assume that ρ, ν, λ and µ0 are constant. The fluid is contained between
two concentric cylinders of inner radius R1 and outer radius R2. The inner and outer
cylinders rotate at constant angular velocities Ω1 and Ω2 respectively. A magnetic field
B0 = µ0H ẑ is applied externally in the axial direction. We make the usual simplifying
assumption that the cylinders have infinite length and use cylindrical coordinates
(r, θ, z).

Throughout the rest of this work we will make the variables dimensionless using
the following scales:

δ = R2 − R1 length (gap width); δ2/ν time (viscous diffusion);

ν/δ velocity; µ0H magnetic field.

We introduce the following dimensionless parameters: radius ratio (η), Reynolds
numbers (Re1 and Re2), Hartmann number (Q) and magnetic Prandtl number (ξ)
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defined as

η = R1/R2; Rei =
RiΩiδ

ν
, i = 1, 2; Q =

µ2
0H

2σδ2

ρν
; ξ =

ν

λ
. (2.2)

The dimensionless forms of (2.1a, c) are then

∂tu+ (u · ∇)u = −∇p+ ∇2u+
Q

ξ
(∇ ∧ B) ∧ B, (2.3a)

∂tB =
1

ξ
∇2B + ∇ ∧ (u ∧ B). (2.3b)

A steady-state solution of the governing equations is circular-Couette flow, ũ =
(0, ũθ, 0) where ũθ = Ar + B/r. The constants A and B are determined by the no-slip
boundary conditions. We set u = ũ+u′ and p = p̃+p′. The deviation, u′, then satisfies
the homogeneous Dirichlet boundary condition, u′ = 0 at R1, R2. Subtracting the
Navier–Stokes equation for ũ from (2.3a), the evolution of u′ is now described by

(∂t − ∇2)u′ = N − ∇p′, ∇ · u′ = 0, (2.4a , b)(
∂t − 1

ξ
∇2

)
B = NB, ∇ · B = 0, (2.4c, d )

with nonlinear terms,

N =
Q

ξ
(∇ ∧ B) ∧ B − (u · ∇)u′ − (u′ · ∇)ũ, NB = ∇ ∧ (u ∧ B). (2.4e, f )

The magnetic Prandtl number ξ is very small in liquid metals available in the
laboratory, so we set B = B0 + ξb. In the limit ξ → 0 the governing equations
become

(∂t − ∇2)u′ = N − ∇p′, ∇ · u′ = 0, (2.5a , b)

∇2b = NB, ∇ · b = 0, (2.5c, d )

where

N = Q(∇ ∧ b) ∧ B0 − (u · ∇)u′ − (u′ · ∇)ũ, NB = −∇ ∧ (u ∧ B0). (2.5e, f )

Note that these equations are descriptive rather than predictive for b.

3. Boundary conditions
The governing equations (2.4) represent a tenth-order system in r and we therefore

require ten boundary conditions. The first six are simply the no-slip condition, ur =
uθ = uz = 0 applied at the boundaries r = R1 and r = R2. The boundary conditions
for the magnetic field depend on the nature of the container, as discussed by Roberts
(1964), who determined conditions for arbitrary values of electrical conductivity. The
experiments by Donnelly & Ozima (1962) used mercury with Perspex and stainless-
steel containers. Only a small difference was found between the results obtained
using different containers. Hereafter we consider only the simple case of insulating
boundaries.

Ampere’s law states that J = ξ−1∇ ∧ B = 0, when r < R1 or r > R2, as the current
within an insulator must be zero. It follows that the magnetic field is irrotational and
can be expressed in terms of a potential, ψ, in the following way:

B = −∇ψ, −∇ · B = ∇2ψ = 0. (3.1)
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This equation can be solved for ψ by separation of variables, ψ(r, θ, z) = R(r)Θ(θ)Z(z).
In our periodic coordinates we obtain,

Θ ′′(θ)

Θ(θ)
= −m2,

Z ′′(z)
Z(z)

= −α2, (3.2)

where m is integer. The equation for R(r) satisfies the modified Bessel equation,

1

r
R′(r) + R′′(r)−

(
α2 +

m2

r2

)
R(r) = 0. (3.3)

The boundary conditions for R(r) then depend on the type of solution.
If ψ is independent of θ and z (m = α = 0) then ψ must be constant and so B = 0.

But this means that we have three conditions at each boundary, and we only need two.
However, the divergence-free condition implies that a solution which is independent
of θ and z must have no radial component. It is therefore sufficient to take

Bθ = Bz = 0. (3.4)

If ψ is independent of z but depends on θ (α = 0, m 6= 0) then R(r) = r±m. Recalling
that B = ∇ψ, we have,

∂θBr = ±mBθ, Bz = 0. (3.5)

If ψ is z-dependent (α 6= 0) then R(r) = Bm(r) where Bm(r) denotes either of the
modified Bessel functions Im(αr), Km(αr). We obtain

∂zBr =
∂rBm

Bm

Bz,
1

r
∂θBz = ∂zBθ. (3.6)

In the outer region r > R2 the field tends to zero, B → 0 as r → ∞, and in the inner
region r < R1 B must remain finite, which implies that we take

R(r) =

 Im(αr)

Km(αr)
or

r+m

r−m
on

r 6 R1

r > R2

(3.7)

The two relations (3.4) and (3.5) or (3.6) applied at the points r = R1 and r = R2, given
the appropriate function from (3.7), are equivalent to Roberts’ insulating boundary
conditions. In this way we have the remaining four boundary conditions required.

4. Formulation and solution
The difficulty with primitive-variable formulations is how to ensure a divergence-

free field. A possible solution is to combine time splitting and pressure projection.
The divergence of the momentum equation gives a Poisson equation for the pressure
which is used to project the velocity into the space of solenoidal functions. No pressure
term occurs naturally in the induction equation, and if not removed divergence can
build up in the solution for the magnetic field, especially at larger magnetic Prandtl
numbers. However, an arbitrary projection function could be added in order for the
divergence to scale with the timestep. Marcus (1984) used an influence matrix method
in order to implement the correct boundary conditions for the pressure (Rempfer
2002). This technique leads to a divergence that is zero to machine accuracy. In
both methods an adjustment to the field is made at each timestep. However, for
the hydromagnetic case there is no timestep in the small Prandtl number limit;
without potentials it is difficult to invert the Poisson equation for the magnetic field
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whilst simultaneously ensuring it is divergence-free. We propose a formulation able
to cope with both finite Prandtl numbers and the small Prandtl number limit without
significant adjustments.

Popular in MHD is the toroidal–poloidal potentials form where variables are
decomposed as A = ∇∧ (ψe) +∇∧∇∧ (φe) where e is a vector constant. To eliminate
the pressure in the momentum equation it is common to take the e-components of the
first and second curls as the governing equations for the velocity. For the magnetic
field it is sufficient to take the e-components of the induction equation and its first
curl.

In spherical geometry one assumes e=rs, the spherical radius. Taking rs-components
of successive curls, the Navier–Stokes and induction equations separate into one
equation for each of the potentials, Hollerbach (2000b). Unfortunately complications
can arise if this method is used in cylindrical geometry. The choice e = ẑ leads to
separate equations for each of the potentials but raises the order of the equations in
r. However, Marqués (1990) has derived the extra boundary conditions required for
the hydrodynamic problem.

Taking the second curl leads to an operator acting on one of the potentials in the
form of double Laplacians. In spherical geometry Tilgner & Busse (1997) successfully
implemented a second-order code using this formulation with stress-free boundaries.
Hollerbach (2000b) also used this formulation with no-slip boundary conditions but
found it to be unstable, even for very small timesteps, unless an implicit first-order
time discretization was used. In the cylindrical geometry Rüdiger & Feudel (2000)
used the formulation of Marqués (1990), but similarly used a first-order method
to avoid numerical difficulties. It is not at all clear that higher derivatives neces-
sarily entail numerical instability in hydrodynamical solvers. However, for reasons
that become apparent when the velocity field is discussed (§ 4.3), the second curl is
avoided.

Instead we are motivated by a parallelism with the magnetic field and take only
the first curl. As the pressure has not been eliminated, we also take the divergence
of the momentum equation. A single-curl formulation was proposed by Glatzmaier
(1984) in the spherical geometry and has proved very successful.

We have made the choice e = r where r is the cylindrical-polar radius. This
choice gives equations which couple the potentials, but this is no particular problem;
with primitive variables r- and θ-components are coupled. Fortunately, although we
still raise the order of the equations, the extra derivatives appear in the periodic
coordinates and so no extra boundary conditions are required. To ensure capture of

all possible solutions extra terms along θ̂ and ẑ are added, in order to accommodate
solutions that are independent of both θ and z. A full expansion of variables has the
form

A = ψ0θ̂ + φ0ẑ + ∇ ∧ (ψr) + ∇ ∧ ∇ ∧ (φr), (4.1)

where ψ(r, t, z), φ(r, t, z) and ψ0(r), φ0(r) contain the periodic and non-periodic parts
respectively. We discuss first the formulation for the magnetic field, as it motivates
the method for the velocity.

4.1. The magnetic field

The magnetic field is expanded as

B =T0θ̂ +P0ẑ + ∇ ∧ (Tr) + ∇ ∧ ∇ ∧ (Pr), (4.2)
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and substituted into the induction equation, (2.4d ). For the non-periodic potentials
T0,P0 the governing equations are obtained from the θ-, z-components,(

∂t − 1

ξ

(
∇2 − 1

r

))
T0 = θ̂ ·NB, (4.3a)

(
∂t − 1

ξ
∇2

)
P0 = ẑ ·NB. (4.3b)

with boundary conditions at R1, R2,

T0 = 0, P0 = 0. (4.4)

The periodic potentials T,P are assumed to be of form ei(αz+mθ). In order to match
the boundary conditions a spectral expansion will be required. There is no pressure
term to eliminate here, so we take the r-components of the induction equation and
its first curl,

2

ξr2
∂θzT−∇2

c

(
∂t − 1

ξ
∇̃2

)
P− 2

ξr3
∂rθθP =

1

r2
r ·NB, (4.5a)

−∇2
c

(
∂t − 1

ξ
∇̃2

)
T− 2

ξr3
∂rθθT+

2

r2

(
∂t − 2

ξ
∇2

)
∂θzP =

1

r2
r · ∇ ∧NB, (4.5b)

where

∇̃2 = ∇2 +
2

r
∂r, ∇2

c =
1

r2
∂θθ + ∂zz, (4.6)

with boundary conditions at R1, R2,

α = 0: ∂θT = 0,
(
∇2
c ± m

r
∂r

)
∂θP = 0; (4.7a)

α 6= 0:

∇2
cT− 2

r2
∂θzP = 0,

1

r
∂θT−

( Bm

∂rBm

∇2
c +

2

r
+ ∂r

)
∂zP = 0.

 (4.7b)

This formulation is suitable for the small Prandtl number limit (2.5), relevant
to laboratory liquid metals. We expand b by the same potentials and make the
replacements

∂t → 0, −1

ξ
→ 1,

throughout. The field b satisfies the same boundary conditions as B.
Having settled on a formulation of the equations, we now discuss the numerical

method.

4.2. Numerical method

It is customary to adjust the radial range into the unit interval, so a new radial
variable x is defined as

r = R1 + x, R1 = η/(1− η), x ∈ [0, 1]. (4.8)
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If a field is expected to have m1-fold rotational symmetry, such as the case of wavy
modes, then variables are expanded as

A(x, θ, z, t) =

N∑
n=0

∑
|k|<K

∑
|m|<M

Ankm(t)T ∗n (x) ei(αkz+m1mθ) (4.9)

on the domain [0, 1]× [0, 2π/m1]× [0, 2π/α] where T ∗n (x) is the nth shifted Chebyshev
polynomial. Variables are collocated on the N + 1 extrema of TN(x). This arrange-
ment of points is well suited to our problem with the points concentrated near the
boundaries.

As the velocity and magnetic field are coupled by the nonlinear terms it makes
sense to treat them explicitly. Nonlinear terms are evaluated pseudospectrally, where
necessary. Large terms in the zero modes, like circular-Couette flow and the imposed
magnetic field, can be extracted and calculated exactly. Let q indicate the time
discretization tq = q∆t with q = 0, 1, 2, . . . . We choose to use second-order Adams–
Bashforth to estimate NB at the intermediate time q + 1

2
.

The linear terms are easier to evaluate and are timestepped using the implicit Crank–
Nicolson method. Substituting the spectral expansion in the governing equations (4.5)
and the boundary conditions (4.7), after collocation the problem for each k, m mode
becomes

X

[ T
P

]q+1

= Y

[ T
P

]q
+

[
N1

N2

]q+1/2

, (4.10)

where X and Y are matrices. The vector [T,P]q contains the spectral coefficients of
the potentials at time tq . The nonlinear terms have been evaluated on the collocation
points. Despite the Fourier expansions, the matrices X ,Y are real and are calculated
by the same routine, as they differ only by a scalar constant, namely ±∆t.

With this formulation modifications for the small Prandtl number limit (2.5) are
relatively minor. The magnetic field is now completely defined by the velocity at some
particular time tq , For each k, m mode the problem in matrix-vector form is now
simply

X

[ T
P

]q
=

[
N1

N2

]q
. (4.11)

The matrices X are calculated by the same routines as above as, again, they only
differ by scalar constants.

4.3. The velocity field

Unless there is an externally imposed velocity field, there is no non-periodic pressure
to be eliminated. The non-periodic part of the velocity is then treated in the same
manner as the magnetic field, i.e.(

∂t −
(
∇2 − 1

r

))
ψ0 = θ̂ ·N , (4.12a)

(∂t − ∇2)φ0 = ẑ ·N , (4.12b)

with boundary conditions

ψ0 = φ0 = 0 (4.13)

on R1, R2.
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For the periodic part we follow the procedure applied to the magnetic field and
take only the first curl. As the pressure has not been eliminated, we also take the
divergence of the momentum equation. The equations obtained are

2

r2
∂θzψ − ∇2

c(∂t − ∇̃2)φ− 2

r3
∂rθθφ =

1

r2
r · (N − ∇p), (4.14a)

−∇2
c(∂t − ∇̃2)ψ − 2

r3
∂rθθψ +

2

r2
(∂t − 2∇2)∂θzφ =

1

r2
r · ∇ ∧N , (4.14b)

∇2p = ∇ ·N . (4.14c)

These equations may look complicated enough, but taking the second curl they are
much worse! However, they simplify considerably for the axisymmetric problem. Note
also the simplification that the linear differential operators on the left-hand sides of
(4.5a, b) and (4.14a, b) are the same with ξ → 1. Fourth-order derivatives have been
avoided, otherwise as |dp T ∗n (x)/dxp| = O(n2p) matrices can become difficult to invert
accurately with larger truncations.

Every governing equation is only second order in r, and therefore all equations
have the same number of associated boundary conditions. This permits us to take
the same radial truncation N for all variables, so all matrices are likewise of the same
size. This simplifies the actual implementation enormously. In fact, we timestep the
governing equations (4.14a, b), the same way as the magnetic field,

X

[
ψ

φ

]∗
= Y

[
ψ

φ

]q
+

[
N1

N2

]q+1/2

, (4.15)

and the matrices X−1,X−1Y may be precomputed by the routine for the magnetic
field as the equations are the same, but for scalar constants. Thus, linear terms
for the velocity are also timestepped using Crank–Nicolson. Using this method,
Marcus (1984) found that a numerical neutrally stable oscillation can occur at large
wavenumbers. Fortunately this does not present a problem here, as the presence of
the magnetic field tends to reduce the natural wavenumber.

Together, the evolution equations (4.14a, b) are only fourth order in r for the
potentials, but there are six boundary conditions for the velocity. They are timestepped
with boundary conditions uθ = uz = 0, or

r∂zψ + ∂rθφ = 0, −∂θψ + (2 + r∂r) ∂zφ = 0. (4.16a , b)

The pressure-Poisson equation (4.14c) is inverted with the boundary condition ur = 0,
or

−r∇2
cφ = 0, (4.16c)

essentially the no-penetration condition.
Inversion of (4.14c) requires a boundary condition, indirectly determined by (4.16c),

in terms of p. The adjustment for pressure is[
ψ

φ

]q+1

=

[
ψ

φ

]∗
− X−1

 1

r
∂rp

0

 . (4.17)

In order to separate φq+1 from ψq+1 we must work with X−1 rather than X . For
each k, m mode ∇2

c is just a scalar. Imposing −r∇2
cφ

q+1 = 0 the boundary condition
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∆t % error in σ % error in σB

0.01 5.74× 10−2 —
0.003 5.18× 10−3 1.48× 10−2

0.001 5.76× 10−4 1.65× 10−3

0.0003 5.2× 10−5 1.5× 10−4

0.0001 6× 10−6 2× 10−5

Table 1. Error in growth and decay rates. N → ∞. For η = 1/1.444, α = 3.13, Re1 = 80, Re2 = 0
the growth rate is σ = 0.430108693 (Barenghi 1991). For the magnetic field m = 1, σBξ = 14.055585,
ξ = 1. The error is proportional to ∆t2.

Q αc N Rec

30 2.69 8 280.97
10 281.05

100 1.73 8 463.20
10 463.52

300 0.928 8 796.52
10 798.57
12 798.55

Table 2. Critical Reynolds numbers for varying numbers of modes and magnetic field strengths;
η = 0.95 with insulating walls. For the largest number of modes in each case the values are the
same to five significant figures as the results of Roberts’ (1964) calculations.

becomes

X̂−1

(
1

r
∂rp

)
= φ∗, (4.18)

where X̂−1 is the lower left quadrant of X−1. Condition (4.18) is implemented in the
usual manner by multiplying on the left with the coefficients T ∗n (x) at the boundaries.

5. Results
5.1. Linear stability

The linear part of the code is shared between the velocity and magnetic fields.
Appropriate tests are determining the critical Reynolds number, Rec, for the onset of
Taylor-vortex flow in the presence/absence of a magnetic field, and determining the
growth/decay rates of either field.

An eigenfunction of the linearized equations grows or decays exponentially at a
rate σ. Barenghi (1991) examined convergence with ∆t for the velocity by comparing
with a known growth rate. A simple initial disturbance to the appropriate mode is
φ ∝ x2(1 − x)2 sin αz, or equivalently φ0,±1,0 = 3∆, φ2,±1,0 = −4∆, φ4,±1,0 = ∆, which
satisfies the boundary conditions and mimics TVF surprisingly well.

To ensure that the boundary conditions for the magnetic field have been set up
correctly we check our method against analytically derived decay rates (see the
Appendix). Table 1 shows results of the test of growth rates and the comparison with
Barenghi (1991). Note that the error is proportional to ∆t2.

To check the interaction of the two fields and the case ξ → 0 we compare the
onset of TVF with Roberts (1964). Table 2 shows the number of modes required to
reproduce a few of Roberts’ results to five significant figures.
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N K ur

Re1 = 72.4569 106.066 150.0

10 6 4.236577 17.94932 33.48869
8 4.236615 17.97669 33.66495

12 4.236616 17.97902 33.70222
16 6 4.233596 17.94086 33.45839

8 4.233635 17.96816 33.64135
12 4.233635 17.97046 33.67982

— — 4.23363 17.9705 33.6805

Table 3. Radial velocity at the outflow. ∆t→ 0; η = 0.5, x = 0.5, α = 3.1631, and a fixed outer
cylinder. In the last row are the values for Re1 = 72.4569, 106.066, 150.000 (Jones 1985).

Re1/Rec 2π/α Marcus Measured

3.98 2.40 0.3443± 0.0001 0.3440± 0.0008
3.98 3.00 0.3344± 0.0001 0.3347± 0.0007
5.97 2.20 0.3370± 0.0001 0.3370± 0.0002

Table 4. Wave speeds expressed as a fraction of the angular velocity of the inner cylinder.
η = 0.868, Rec = 115.1, m1 = 6.

5.2. Nonlinear two-dimensional flow

The saturation to a steady flow, for some not too large Re1 > Rec, provides a testing
ground for the evaluation of nonlinear terms. Barenghi (1991) compares values for
velocities at the outflow which are in agreement with results obtained by Jones (1985)
using a different method. In table 3 we examine convergence with N, K . Generally
we find that convergence is quicker in z than r, and for a given truncation accuracy
decreases with increasing Re1. More energy is found in the higher modes as Re1 is
increased.

5.3. Wave speeds in wavy TVF

A simple small wavy perturbation to axisymmetric TVF that satifies the boundary
conditions is ψ ∝ x2(1 − x)2 sinm1θ for some wavy mode m1. The perturbation will
either decay or grow and saturate depending on whether or not the parameters are
in the wavy TVF regime. King et al. (1984) compared wave speeds founds from
physical experiments with numerical calculations. They found that “the wavespeed
is a sensitive indicator of the accuracy of a numerical code” . . . “any compromise in
numerical resolution changes the wavespeed by several percent”. They also argue that
the wave speed can be measured more precisely, both in experiment and numerically,
than torques which are dependent on axial wavelength (see the comparison with
torque experiments in § 6).

A few of the results used by Marcus (1984) as a test for his numerical method are
given in table 4. Marcus’ numerical results were well within the range of experimental
error of about 1%. Calculations with our code gave results all within 0.1% of Marcus’
values.

6. Nonlinear hydromagnetic flow and comparison with experiment
It should first be noted that the results of the previous section agree well with

experiments. In this section we directly compare our results with hydromagnetic
torque experiments.
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Figure 1. Hydromagnetic flow in the presence of an imposed axial field. Q = 180, Re1 = 1.5Rec,
Rec = 619, η = 0.95, α = 1.24. The right-most plot demonstrates that the field lines are dragged by
the in- and outflows.

The torque per unit axial length on the inner cylinder is defined as

G =
αr

2π

∫ 2π

0

r dθ

∫ 2π/α

0

dz

(
1

r
− ∂r

)
uθ

∣∣∣∣∣
r=R1

. (6.1)

There is no magnetic torque with insulating boundaries. For an axisymmetric flow
and given the expansion for the velocity (4.1), this simplifies to

G = 2πr2

(
1

r
− ∂r

)
(ψ0 + ũθ)

∣∣∣∣
r=R1

. (6.2)

The ratio of the effective viscosity of the flow to the kinematic viscosity of the
fluid is G/G̃ where G̃ is the component of the torque due only to the underlying
circular-Couette flow, ũθ .

Typical nonlinear steady fields in the presence of an imposed axial field are shown
in figure 1. The main difference between the hydrodynamic and the hydromagnetic
cases is the axial elongation of the Taylor cells. Not much difference is evident between
the eigenfunctions and the saturated fields other than that the vortex centres move
slightly outwards and closer together towards the outflow.

Figure 2 shows experimental results obtained by Donnelley & Ozima (1962) with
mercury and Perspex cylinders. Also shown are torques for axisymmetric calculations
with their aspect ratio, η = 0.95, and results of an amplitude expansion calculated by
Tabeling (1981) in the narrow gap limit.

As the Reynolds number is increased there is good agreement between our nu-
merical method, Tabeling’s amplitude expansion and Donnelly’s experiment, until
Donnelly’s results deviate from both ours and Tabeling’s calculations. The points
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Figure 2. Comparison of torques. Experimental results with η = 0.95. 4, Q = 0; +, Q = 180;
�, Q = 652. Solid line, our numerical results. Dashed line, Tabeling’s expansion about the Reynolds
number in the narrow gap limit.

plotted in figure 2 are time averages as significant fluctuations were observed. Tabel-
ing conjectured that this is due to the appearance of wavy modes. With Q = 0 the
onset of wavy modes is not far above the onset of TVF and in simulations of these
modes we find a reduced torque.

Note that if an axial magnetic field is imposed the onset of wavy modes is
significantly inhibited. A detailed investigation of the linear and nonlinear aspects of
the wavy modes will be presented in the next paper of this series. Here it suffices to
note the good agreement between our calculations and the experiment in the weakly
nonlinear axisymmetric regime.

7. Discussion
In conclusion, we have developed a formulation of the governing MHD equations

of the cylindrical Couette geometry, suitable for timestepping in the nonlinear regime.
Results agree well with experiments.

Although the equations do not decouple in the linear part, and we must treat
mean flows separately, the formulation is similar to that used by Galtzmaier (1984) in
spherical geometry. We use potentials for the velocity yet do not eliminate the pressure.
This has several advantages. Our motivation for adopting such a formulation is that
the magnetic field then shares the same formulation as the velocity, dramatically
reducing the potential for error. Only a relatively small part of our code is dedicated
entirely to the magnetic field; this feature is important for testing, as there are fewer
results with which to compare our results. Furthermore, it can also accommodate the
small Prandtl number limit with only minor adjustments. The choice of governing
equations which are only second order in r makes the method accurate and matrices
easily invertible. This feature also enables us to take the same radial truncation for
all variables, if we desire, simplifying implementation a great deal.

We have opted to use potentials which ensure divergence-free fields. Primative
variable formulations for time integration of the Navier–Stokes equations, such as
Marcus (1984) and Quartapelle & Verri (1995) in this geometry, do not in general
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extend naturally to the magnetic field. In particular, they are not well suited to the
small Prandtl number limit, relevant to liquid metals available in the laboratory.

For the axisymmetric case the expansion by potentials is essentially the same as
that used by Barenghi (1991) and Jones (1985) and results appear to be very similar
in terms of accuracy. Although we have one extra equation, the actual form of our
equations is simpler because we avoided taking the second curl.

Our method is second order in time and exhibits good temporal stability, We
have not encountered the difficulties experienced by Hollerbach (2000b) and Rüdiger
& Feudel (2000) with three-dimensional potential formulations and no-slip bound-
aries. Using the implict Euler method on the linear terms reduces the method to
O(∆t/Re, ∆t2). With finite magnetic Prandtl numbers the magneto-rotational insta-
bility (Rüdiger & Zhang 2001; Willis & Barenghi 2002) leads to Reynolds numbers
which can be surprisingly low and the O(∆t/Re) error would dominate.

Results obtained using our method compare well with existing hydrodynamic
literature with respect to the nonlinear equilibration of Taylor-vortex flow (Barenghi
1991), the onset of wavy modes (Jones 1985) and the wave speed of wavy modes
(Marcus 1984). In the presence of a magnetic field the results also compare well for
the linear stability of circular-Couette flow (Roberts 1964), and in the nonlinear range
the amplitude expansion of Tabeling (1981) and experiments of Donnelly & Ozima
(1962).

In further work, we will use this method to analyse nonlinear three-dimensional
hydromagnetic Taylor–Couette flow.

The authors wish to thank Anvar Shukurov and Wolfgang Dobler for stimulat-
ing discussions and encouragement during this work, and to a referee for helpful
clarifications.

Appendix. Decay of the magnetic field
To derive the decay rate of the magnetic field when u = 0 we use a mixture of

analytical and numerical methods, different from the numerical technique used to
solve the MHD equations. We express the magnetic field in terms of two scalar
potentials,

B = ∇ ∧ (Tẑ) + ∇ ∧ ∇ ∧ (Pẑ). (A 1)

Each of T, P is expanded and we seek eigensolutions for the magnetic field of the
form

A(r, θ, z) =

∞∑
k,m=−∞

Akm(r) e−σt+i(αkz+mθ), (A 2)

where σ is the decay rate. Substitution into (2.3c) yields the Bessel equation,

1

r
∂r Akm(r) + ∂rr Akm(r) +

(
σ̂2 − m2

r2

)
Akm(r) = 0, σ̂2 = σξ − α2k2, (A 3)

which has solution

Akm(r) = AJkmJm(σ̂r) + AYkmYm(σ̂r). (A 4)

Matching at the two boundaries the conditions (3.6)–(3.8) for the magnetic field
defines the problem

M (σ̂)[TJ
km, TY

km, PJ
km, PY

km]T = 0, (A 5)
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k σξ

m = 0 1 2 3

0 (T) 10.634504 2.525434* 6.259403 11.170948
(P) 9.613411 10.634504 13.640533 18.474045

1 (1st) 14.919861 14.760834 16.619549
(2nd) 20.431404 22.010271 25.611050

2 (1st) 45.851458 45.868780
(2nd) 49.822104 51.678920

Table 5. Decay of the magnetic field, σξ, for η = 0.35, α = 3.13. When k = 0 toroidal and poloidal
modes separate and their slowest decaying modes are given; α is a redundant parameter in this
case. Otherwise they couple and the first two modes are given. The dominant mode is marked *.

for the four unknown coefficients. The quantity M is a 4 × 4 matrix and is real if
σ̂ is real (non-oscillatory decay modes). The slowest decaying eigensolution for B is
determined by the smallest σ̂ such that detM (σ̂) = 0. Results are shown in table 5.
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